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(Quantum Fluctuations in
L. P. BOLGIANO,

Srmwnarg-This paper assesses the possible significance of the

quantum nature of electromagnetic radiation in limiting the measure-

ment accuracy attainable with a microwave radiometer. Analogies

are shown to exist between the form of a formula describing fluctua-

tions in the radiometer output, and both a formula describing the

radiometer input signal, and also, a formula describing the output of

a photocell detector. Detailed quantum mechanical consideration of

the processes of amplification and detection are circumvented by

considering how the formula for fluctuations in the radiometer out-

put might be modhied so as to make it consistent with the measure-

ment precision implied by these other formulas. A modified formula

is suggested which includes a quantum fluctuation whose magnitude

depends on signal power.

I. INTRODUCTION

‘- THE development of microwave radiometers with

T
very low noise figures and very wide bandwidths

has been steadily decreasing the average number

of photons per unit time-bandwidth represented by the

minimum perceptible signal. It is, therefore, of interest

to consider whether the quantum nature of electro-

magnetic radiation might be significant in limiting the

measurement accuracy attainable in microwave radi-

ometry.

Weber’ and Strandberg2 have computed the ultimate

limit on sensitivity set by spontaneous emission noise

for both maser and vacuum tube amplifiers. The

equivalent temperature of this noise is only hj’/k for a

maser and hf/2k for a vacuum tube amplifier. Perhaps

of more immediate significance for microwave radiom-

eter>’ is the possibility of a quantum fluctuation de-

pendent on signal power analogous to the random

counting rate of a photon counter. Gabor3’4 has dem-

onstrated mathematically that it is not possible to ex-

tract more information from a signal with electron tube

apparatus capable of measuring both amplitude and

phase than with photon counters. .Accordingly, quantum

mechanics should place similar restrictions on the de-

gree to which fluctuations can be reduced in optical and

microwave radiometry. Recently, wave and particle

fluctuations have been measured simultaneously in the

outputs of optical photocell detectors.5’G In Section II,
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we shall show that wave and particle fluctuations also

coexist in the description statistical mechanics gives for

the input signal to a microwave radiometer. In Section

111, we show that the usual formula for the fluctuations

in the output of a microwave radiometer has an analo-

gous form to the portion associated with wave effects of

both the formula found in Section II and also a formula

describing the wave and particle fluctuations in the out-

put of a photocell detector. In Section IV, we show how

the microwave radiometer formula might be modified to

include a particle fluctuation term of the form suggested

by these analogies. In Section Lr, we compare the mag-

nitude of this particle fluctuation with that of the

classical wave fluctuation.

II. FLUCTtTATIONS IN A RADIO SIGNAL

In this section, we shall deduce a formula describing

fluctuations in the input signal of a wide-band micro-

wave radiometer. If the input signal consists of thermal

radiation, it may be described by the Planck radiation

formula. In its most familiar form the Planck radiation

formula is written as the product of two factors. One

factor, 87r~2 I’dj/c3, specifies the number of standing-

wave lmodes between frequencies j and ~+a’~ in a large,

three-dimensional volume V. The other factcr, h~/ (exp

hf/k T – 1), gives the energy associated with each mode.

For a long one-dimensional microwave transmission line

of length L, for which only one field polarization is

possible, the first factor becomes instead (2 L/c)d~

This gives it the frequency independence necessary for

radiative equilibrium with the Johnson noise of a re-

sistive termination. In the language of statistical me-

chanics, each standing-wave mode corresponds to a,

quantum state, and the Bose-Einstein distribution

l/(exp hf/k T– 1) is regarded as specifying the number

of quanta of energy lrf in the quantum state associated

with the mode of frequency f. Our interest will be in

the time fluctuation which the Bose-Einstein prob-

ability distribution implies in the number of quanta

occupying a group of adjacent quantum states. From a.

communication theory viewpoint these fluctuations in

numbers of quanta constitute energy fi actuations

within the frequency bandwidth corresponding to these

quantum states.

This fluctuation may be computed by quantum

statistics. We shall describe the relationship of this

theor]- to electromagnetic theor>- only in sufficient de-

tail to permit stating the computation of the fluctuation

as given by Landau and Lifschitz7 who give an extensive

discussion of fluctuations in statistical mechanics. In

the classical Rayleigh-Jeans wave theory c~f therma[

T L. D. Laudau and E. M. Lifschitz, “Statistical Physics, ” Addi -
son-Wesley Publishing Co., Inc., Reading, Mass,; 1’958. See es-
pecially p. 358. (Translated from the Russian by E. and R. F. Peierls. )
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radiation, equal energy was accorded each standing-

wave mode. In the quantum statistical description, the

total energy is assumed distributed among all the modes

in the most probable way consistent with the con-

straint that the energy of each mode be an integral

multiple of k~. This gives particle properties to the

radiation since the computation parallels the classical

particle mechanics computation of the most probable

distribution of gas particles among cells in phase space,

such that all particles in a given cell have equal kinetic

energy. In fact, the only essential difference is the lack

of an equivalent for the possibility which exists with

classical particles of imagining them individually

labelled so that one can speak of which particle is in

which cell. This has no equivalent in the quantum

statistical theory where only the total number of

quanta associated with each standing-wave mode or

quantum state need be specified to completely describe

a possible energy distribution. The quantum statistical

theory may thus be regarded alternatively as describing

waves with quantized energies or, equivalently, particles

which are intrinsically indistinguishable from one

another.

This intrinsic indistinguishability of particles must be

assumed for gas particles, in general, in order to obtain a

correct quantum mechanical description, and so is not a

peculiar property of massless photons. The photon dis-

tribution formula l/(exp lz~/k T– 1) may thus be re-

garded as a special case of the general Bose-Einstein

distribution formula applicable to gas particles not

subject to the ‘Pauli exclusion principle. This formula

may also be used to compute the

particles in a single quantum state,

may be written as

— 1?18=~(E8–lL)/kz’—1
where E, is the kinetic energy, equal

mean number of

in which case it

(1)

to Jzf for photons,

and ,u is the chemical potential, equal to zero for pho-

tons.

Since this mean is associated with a thermal equilib-

rium, the precise number of particles in the state will

fluctuate about n, with time. The mean-square fluctua-

tion may be computed by the general formula’

(2)

which describes the fluctuation in number of particles

in a portion of a gas at constant temperature and

volume. Applying this to (1) gives

~(Erp)/kT —
‘An’)’= (e(E.-@/kT’ _ 1)’ = ‘s + ‘i” (3)

for all Bose-Einstein particles and for photons in par-

ticular. The statistical independence of the quanta per-

mits summing over a group of N adjacent quantum

states containing altogether n = Mzs quanta to obtain

for the mean-square fluctuation in the number of

quanta associated with N adjacent quantum states

The corresponding fluctuation in energy E obtained

by multiplying by (h~)z is

(AE)’ = hf~ + ~2/N. (5)

This expression is interesting because, as first shown by

Einstein and Lorentz,8 it gives the total fluctuation as

the sum of two terms which separately correspond to

either classical particle or classical wave phenomena.

The first term by itself is the <; rms fluctuation

kinetic theory gives for the fluctuation in the number of

classical particles in a small region of a large gas. The

second term by itself is identifiable with the rms energy

fluctuation proportional to squared amplitude which re-

sults from beats between random classical waves and is

normally the only fluctuation considered in communica-

tion theory.

In order to evaluate the number of quantum states N

associated with a portion of the radiometer input signal,

we need a correspondence between the equilibrium

quantum states we have associated with the Planck

radiation law and the received signal. The needed cor-

respondence is implicit in the previous statement that

the number of standing-wave modes or quantum states

between frequencies f and f+df in a line of length L

is (2L/c) Af. The length of line per quantum state ob-

tained by dividing the number of states into L is

Ax= 2c/Af. Halving the number of degrees of freedom

to correspond to the fact that we are interested in prop-

agation in only one direction gives AxAf = c. In terms of

the particle momentum P = hf/cj this is equivalent to

the usual association of quantum states with cells of

area AXAP = h in two-dimensional phase space. Al-

ternatively, since a wave propagated at velocity c ad-

vances a distance cAt ==Ax in time At, one may say that

quantum states correspond to cells of area AtAf = 1 on

the time-frequency or information plane. This corre-

spondence was first introduced by Gabor8 and has been

used by Sterng to analyze the information handling

capabilities of a discrete photon channel. It permits one

to say that the number of quantum states in a duration

At of signal extending over a frequency range Af is the

s H. A. Lorentz, “Les Theories Statistiques en Thermodynamic, ”
Teubner Verlag, Leipzig and Berlin, Germany; 1916.

QT. E. Stern, “Some quantum effects in information channels, ”
IRE TRANS. ON INFORMATION THEORY, vol. IT-6, pp. 435-440;
September, 1960.
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number of cells of unit area in the rectangle on the in-

formation plane representing the time-bandwidth prod-

uct , AtAJ .

A microwave radiometer accepts only the signal

power in a bandwidth Aj set by its reception filter and

averages this power over an integrating time At set by

its final smoothing filter. Accordingly, the portion of

input signal energy of significance in determining fluc-

tuations may be regarded as that included in the time-

bandwiclth AtAj. Since this time-bandwidth product

also equals the number of quantum states in the corre-

sponding portion of signal, it may be taken as the ap-

propriate value of N in (4) and (5). Thus, the mean-

square energy fluctuation or equivalently the mean-

square fluctuation in power integrated over time At in

the radiometer input signal is:

(AE)2 = hj~ + ~’/AtAj, (6)

and the mean-square fluctuation in the quanta con-

tained in this portion of the signal is

it’
(An)2 = #i+—

AtAf -
(7)

The first term in these formulas is a consequence of

the quantum nature of the radiation and has no equiv-

alent in classical wave theory. The second term corre-

sponds to the usual wave fluctuation associated with a

random radio signal. In Appendix I I we show that the

fluctuation in the energy of random waves along a trans-

mission line is given by a formula of this form. Ricel”’ll

has computed the mean-square fluctuation in a random

current The formula he obtains for the mean-square

fluctuation is of similar form to (29) of Appendix II and,

as explained there, it may be transformed into the form

~’/AtAj by a change of variables.

III. ANALOGIES BETWEEN FLtTCTUATION FORMULAS

Purcel112 and Mandel’3 find for the Imean-square

fluctuation in the average number of photoelectrons

produced in time At in a photocell illuminated by

Gaussian random waves from a spectral line of

width Af

.!
_——
(An) ’=ti+a20 (8)

AtAf

10S. O. Rice, “Mathematical analysis of random noise, ” in
{{selected papers on Noise and Stochastic Processes, ” N. ~~’a~, Ed. t

Dover Publications, Inc., New York, N. Y., p. 227; 1954, (Reprinted
from Bell Sys. Tech. J., vol. 23, pp. 282-322, July, 1944; vol. 24., pp.
47-156 January, 1945. )

~1s’ ~ Rice l~Fil~ered therlnal noise-fluctuation of energy as a

functi& o~ inte~val length, ” J. ACOUSL SOC. A m., vol. 14, pp. 2 16-227;
April, 1943.

u E. h!. Purcell, “The question of correlation between photons in
coherent light rays, ” Nature, vol. 178, pp. 1449–1450; December 29,
1956.

13L. Mandel, “Fluctuations of photon beams and their corl-ela-
tions,” Proc. Phys. Sot., vol. 71, pp. 1037–1 048; December, 1958.

The first term corresponds to the usual <~ rms fluctua-

tion in counting rate associated with all particle counters.

The second term results from the added assumption of

wave fluctuations in the light illuminating the photo-

cell. a is a constant of the order of unity. Since a similar

constant would be required in (7), had we not tacitly

assumed integrating time and bandwidth definitions

such as to make the minimum Fourier integral uncer-

tainty product AtAf precisely unity, the form of (8) may

be regarded as similar to that of (7).

The usual expression for the mean-square ffuctuatio~]

in the output of a microwave radiometer may be written

in the general form14

(Az)2 = —

AtAf
(9)

where z denotes the mean output meter deflection, Af

the reception filter bandwidth, and At the smoothing

filter integrating time. <(Az)~ is the rms fluctuation in

output meter deflection occasioned by the random char-

acter of both signal and system noise.

As in (7), the absence of a factor of proportionality

of the order of unity in (9) depends on the choice of

definitions for integrating time and bandwidth. Dicke,~5

for example, gives this proportionality factor as T312/8.

The significant point for the qualitative discussion in-

tended here is that this formula for the fluctuation at

the receiver output is of similar form to the terms repre-

senting classical wave effects in both (6), which de-

scribes fluctuations at the receiver input, and (8), which

describes fluctuations in the output of a photoelectric

detector.

IV. MODIFICATION OF RADIOMETER FORMtTLA

In this section, we shall show how (9) might be modi-

fied so as to include a quantum fluctuation term. For a

receiver which contributes no noise of its own, the mean

deflection Z is directly proportional to signal power. For

this limiting case, (9), like (6), (7), and (8) may be re-

garded as representing signal fluctuations. However, as

stated in Section 1, Gabor has shown that no greater

measurement accuracy should be possible with radio

equipment than for the measurements to which (6),

(7), and (8) apply. Formula (9) differs in form from

these formulas only by the lack of a term associated

with particle fluctuations. Formula (7) may be writ-

ten as

(10)

Thus, a modified fluctuation formula for a microwave

radiometer with unity noise figure equivalent to (9) at

14R. S. Colvin, “Faiut signal limitations of radic,mekrs, ” 1959
IRE WESCON CONVENTION RECORD, pt. 8, pp. 52–58.

M R, H, Dicke ‘[The measurement of thermal radiation at micro-

wave frequencies, ” Rev. SCi. Instr., vol. 17, pp. 268--275; July, 1946.
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high intensities, and of similar form to (6), (7), and (8) is

(11)

where z denotes the mean number of photons received

in the integrating time At.

The assumption of an ideal receiver which adds

negligible noise to the signal prevents the usual inter-

pretation of the mean-square fluctuation given by (9)

as the minimum perceptible signal. This usual inter-

pretation is based on the opposite assumption that for

a weak signal the output meter deflection is mainly due

to receiver noise. Then the fluctuation in meter deflec-

tion is primarily a fluctuation in system noise, indis-

tinguishable from an incremental deflection represent-

ing a weak signal unless it exceeds this fluctuation. In

the limit considered here of no receiver noise, the mean

output lmeter deflection is proportional to mean signal

strength alone and the fluctuation in deflection is a

fluctuation in measured signal strength. This fluctua-

tion does determine the accuracy with which the mean

signal strength can be measured. It does not, however,

limit the minimum signal which can be detected, since

the mean-square fluctuation decreases with signal

strength according to either the unmodified formula (9),

or the modified formula (11).

Gabor~ concludes that quantum mechanics prevents

measuring an electromagnetic signal in steps smaller

than the square root of the number of quanta it con-

tains with electron tube apparatus. The mean-square

fluctuation given by (11) differs from the purely wave

fluctuation of (9) by an amount z’/ti. The corresponding

rms relative fluctuation V’(AZ)z/Z equals 1/<;. Thus,

the quantum fluctuation in (11) is the minimum fluctua-

tion consistent with Gabor’s general result.

V. COMPARISON OF WAVE AND PARTICLE FLUCTUATIONS

Since the rms particle fluctuation may be regarded as

a fractional fluctuation of l/~Z in signal power, its

absolute magnitude increases with signal power,

Whether it is likely to be of consequence in a particular

radiometer measurement is, therefore, likely to de-

pend on its size relative to the wave fluctuation whose

magnitude increases even more rapidly with signal

power.

The ratio of the mean-square wave fluctuation to the

mean-square particle fluctuation in (11) equals the

mean number of quanta per quantum state. Thus, if

this ratio is denoted as R,

R == fi/AtAf. (12)

If fi is estimated as signal power P times integrating

time At divided by the mean quantum energy expressed

as the product of Planck’s constant h and the mean

signal frequency ], so that z = (PAt) /h], then the ratio

of the mean-square fluctuations may be written in the

equivalent form

PAt
R=— +AtAf=&

h~ hfAj
(13)

lz~Af is the minimum sensitivity set by spontaneous

emission noise for a maser amplifier since the equivalent

temperature of this noise T = lz~/k corresponds to a

minimum power k TAf = h~Af. From this, it is apparent

that these formulas can have no significance unless R

is greater than unity. Such a limit is to be expected

since many particle statistics were used to derive (4).

171. CONCLUSIONS

Analogies have been shown to exist between the de-

pendence of output meter deflection fluctuations of a

microwave radiometer on bandwidth and integrating

time, and the term representing wave fluctuations in

two formulas which include quantum effects and de-

scribe, respectively, fluctuations in a radiometer input

signal and fluctuations in a photocell output current. It

is shown that a particle fluctuation dependent on signal

power results if the usual formula for the mean-square

fluctuation in the output of a microwave radiometer

with unity noise figure is modified to have the same

form as these other formulas. Although the form of the

modified formula is inferred by analogy, the modifica-

tion is required by Gabor’s general theorem which denies

the possibility of greater signal measurement accuracy

with electron tube apparatus than with particle counters.

APPENDIX I

EFFECT OF ANTENNA

In this appendix, we shall consider how the opera-

tion of the antenna system of the receiver is related to

the fluctuations.

Purely wave considerations are adequate to describe

the coupling which an antenna effects between degrees

of freedom in three-dimensional space and a one-

dimensional transmission line. In fact, if the antenna

did not couple equal numbers of degrees of freedom, a

line terminated by a matched load at one end and at

the other by an antenna in an enclosure of the same

temperature as the line and matched load, could not be

in thermal equilibrium simultaneously at all fre-
quellcies.ls Thus, k Section II, we were able to compute

the number of degrees of freedom involved by simply

counting the number of possible standing-wave modes

for the transmission line. Since the statistical mechanics

computation required only a knowledge of this number,

specific consideration of the antenna was unnecessary.

It may not be entirely evident that this computation

of degrees of freedom using purely wave concepts is

adequate to account for the particle as well as the wave

nature of the radiation. In order to clarify this fact,

we shall give an alternative computation based on
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particle considerations. This computation leads to the

sanle association of quantum states with information

cells of area AtAf = 1 as we fouud using only wave con-

cepts. This shows that the particle nature of the radia-

tion in no way modifies the result and that classical

wave theory is completely adequate to describe the

guiding of the radiation into the transmission line by the

antenna. I n as much as from a wave theory viewpoint

the antenna may be regarded as a suitable aperture to

create a desired diffraction pattern, it is interesting to

compare this situation with X-ray diffraction, The X-ray

diffraction pattern created by a calcite crystal can

similarly be computed from purely wave considerations

even when the intensity is so weak that the photons

‘(guided by” the diffraction pattern are counted only

one at a time.

We now consider how the coupling of the radiation

field in space to a transmission line may be considered

using particle statistics. The radiation in three-dimen-

sional space will be considered to consist of a photon

gas. As is usual in gas theory, quantum states will be

associated with cells of volume ha in the phase space

associated with the gas particles which are in this case

photons, and where h is Planck’s constant, In order to

determine the portion of signal corresponding to one

quantum state, we shall relate the volume of one of

these cells in the six-dimensional phase space associated

with three-dimensional real space to the area of a cor-

responding cell in the two-dimensional phase space as-

sociated with the one-dimensional antenna feed line.

To do this, we note that an antenna with an effective

aperature of width a will have a beam angle of approxi-

mately A/a radians were A signifies the wavelength.

From a particle point of view, one says instead that

there is au uncertainty in the direction of arrival of a

photon, If the usual momentum P = lz~/c is associated

with a photon, the corresponding uncertainty in either

transverse components of momentum is (hj/c) sin (A/a)

or for small angles approximately (lzj/c) (A/a) = lz/a,

corresponding to the Heisenberg uncertainty relation

AfiAx > k with Ax= a. A similar uncertainty in the for-

ward component of momentum of magnitude hAf/c

might result from a receiver bandwidth Af. Thus, since

the volume of a cell in phase space is lZ3 we have

~~s= AXAyAZAPZA@VAP,

= AxAyAz(h/a) (k/a) (hAj/c) (14)

making the volume in real space corresponding to a cell

in phase space

2
AzAyAz = = .

Af
(15)

Putting A.v =Ay = a gives the length in the antenna feed

line corresponding to one cell as

Az = c/Af. (16)

In time At, the radiation will travel a distance

Az = c&, if the transmission line has propagation veloc-

ity c. Hence, we can also say that the quanta received

in a time

Al=~
Af

(17)

may be regarded as belonging to the same phase-space

cell. The portion of signal in a one-dimensional trans-

mission line which the antenna associates with a cell

in six-dimensional phase space may thus be associated

alternatively with cells of area AzAP, = (c/Af)(hAf/c) = k

in the two-dimensional phase space of the photons in

the transmission line or cells of area AtAf= 1 in a two-

dimensional time-frequency or information plane, The

precise values of these uncertainty products, of course

depend on the definitions used for angular bearnwidth,

frequency bandwidth, and effective antenna aperture.

APPENDIX 11

IVAVE FLUCTU.\TION IN A TRANSMISSION LINE

In this appendix, we compute an appropriate wave-

theory formula for the mean-square energy fluctuation

in a o ne-dirnensional black body consisting of a trans-

mission line with matched terminations at both ends

such ZLS used, for example, in the Nyquist derivation

of the Johnson noise formula. The method o [ derivation

and notation will be chosen to emphasize the similarity

of this computation both to Lorentz’s computation

for the equivalent three-dimensional case8 and to Rice’s

computation of the fluctuation in a random current.l”’ll

We assume that the current along the line has statis-

tical properties permitting the representation

where the ~m are random angles. If the fundamental

radian frequency is denoted by AOJ and the constant

IIphase velocity by c, con= n Au and P.= n (As/c) = nAfi.

That is, frequency is always considered positive, but

positive and negative wave numbers are associated re-

spectively with waves traveling in negative and positive

directions. We let C. equal the actual current amplitude

multiplied by the square root of the inductance per unit

length so that Cmz is the average energy per unit line

length in the electromagnetic fields of a single traveling

wave.

The energy per unit line length is then

N

fJ$T’(~,f) = ~ c,,’ CCISz (+$ + @r,Z + fit)

n =—N

N–1 N

+ 2 ~ ~ Cnc. Cos (ant + ~,z + I&,)
.=—N m=a+l

. Cos (comt + pmz + @m) . (19)
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Integrating over z gives the energy in a length L of

the line as

s

L/2E=I,V2(Z,t)dz’–L/2
PNIN– L — ~ C,,z + ~ =~N CnzP,, COS (h,,t + ~,,)

- {2 .=-N .N–1

+ z 5 Q7tmcrLG Cos [(% + wJ~ + (+. + ‘$.)1
.=—N m=,,+ 1N—I

+ x ~ RnmCnC.COS[(co.– co.)t
n=—N?n=n+ 1

+ (d%– Ml}, (m

where

sin @nL
P.=—

, ~ = sin [(B. + &J (L/2)]

~mL ‘m (L/2) (~n + &J ‘

R
sin [(Q – M (L/2)]

nm =

(4W) (i% -A) “

We shall compute the mean energy in length L and

its mean-square fluctuation by averaging over-all possi-

ble values of the ~m. These averages may be easily com-

puted using the fact that a cosine function with random

phase averages zero and also that its square averages $.

The mean energy is given by the first term

~ = (1/2)L ~ Cm’.
~=—N

The remaining terms give the difference e

the mean energy and the total energy. Since

ference accounts for the fluctuation we wish

(21)

between

this dif -

to com-

pute, we can compute the mean-square fluctuation in

energy by calculating the mean value of the square of

these remaining terms.

This computation is facilitated by the following con-

siderations. With the aid of trigonometric identities all

of the cross-product terms may be readily shown to

average zero. We can neglect the sum containing P

since if N is large, the sums containing Q and R will con-

tain many more terms. If we also replace the cosine

squared terms by their average values we have left

N–1 N cn2cm2

7.L2~~
y [Qnm2+ %.2]. (22)

z=—N m=.+ 1

Before completing the computation, it is convenient

to replace the summations by equivalent integrations.

A suitable representation may be obtained by writing

the mean energy as an equivalent

continuous energy spectrum

~ = (1/2)L ~ C.z
n=—NAT.. L Z W(Bn)A13 + L

July

integration over a

n=_N J _=

In order to effect a corresponding transformation of

the expression for ~, we note that including also the N

terms with n = m represents a negligible percentage in-

crease in the total number of terms which permits us to

write Ncn2(_&2>=L25~~ [Qnm2+ R..’], (24
n=—N m=—N

which transforms into

The first integrand will have an appreciable value only

if ~’ is nearly equal to —~. The second integrand wili

have an appreciable value only if ~’ is nearly equal to (3.

Thus, we can make the substitutions W(~’) = IV( –~)

and W(6’) = W(P) in the respective integrands obtaining

Each integral over f?’ equals 27r/L and the bidirectiomd

symmetry of the problem makes W(p) = W( —~). Thus,

Since w(~) = W( –~), the integrals in the expressions for

both ~ and ~ may be written as twice integrals from

zero to infinity. We can then make the substitutions

@= 27r~/c valid for @> O and 47rW(@) = w(f). Defining

w(f) as 47r times W(B) gives zo~) the significance of

energy per cycle for O <f< ~ since W(d) signifies energy

per radian for – cc <8< ~. Formulas (23) and (27)

then become

m

E=~
s

L“
zo(f)df and e’ = —

co s
W’(f)fy. (28)

co



196Y Lewin: Resolution of Waveguide Discontinuity Problems 321

If we are interested in these mean values for only a

limited frequency range f. <f <fb, write T= L/c for the

time requirecl for a wave to propagate the length L of

the line, and assume that the spectral density function

zu(~) has a uniform value zoo between f. and fb (as it does

by even the quantum mechanical form of the Nyquist

noise formula up to nearly the highest microwave fre-

quencies in current use):

~ = ~wo(f~– fa) and ~ = ~~~’(f b -- fa). (29)

Eliminating WO by substituting the first of these formu-

las into the second and redesignating T as At and

j, –fa as A~ gives

—2
E

~=_

AtAf “
(30)

Rice~O,ll obtains for the mean energy dissipated in a

one-ohm resistor by a noise current with uniform

spectral density W. during time T in bandwidth fb—f.

z = Two(jb – f(’), (31)

and for the mean-square energy fluctuation

UT2 = W“vr(fb — f.). (32)

By similarly eliminating WO between these formulas, this

mean-square fluctuation formula can also be converted

to the characteristic form E2/AtAJ.
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On the Resolution of a Class of Waveguide

Problems by the Use of Singular Integral

L. LEWIN~

Surnmarp—It is shown that a considerable number of solutions

of rectangular waveguide problems appearing in the literature are all

special cases of a general treatment focused around the known solu-

tion of a singular integral equation. In terms of this a number of
typical results are re-examined. The method is then applied to four
new conEgurations, and the range of application and the limitations
are examined.

I. INTRODUCTION

F

r HE number of waveguide problems capable of

exact solution is limited to a few very simple

shapes, even when the common approximations of

ideal geometry and infinite wall conductivity are made.

A class of problems recently amenable to exact treatment

has involved configurations in which the discontinuity

has separated the space into two uniform regions,

z <O and z >0. Examples are the radiation into free

space of a semi-infinite length of guide, a bifurcation of

the waveguide, and, exceptionally, a diaphragm half-

way across the guide. The solutions involve the setting

up of an integral equation for the field along the guide

axis, or some other equivalent axis, the integral equation

taking a different form on either side of the discon-

tinuity. It is then solved by the Wiener-Hopf technique,

* Received by the PGMTT, March 8, 1961.
~ Standard Telecommunication Laboratories, Harlow, Essex,

England.

the \vaveguide parameters

from the solution.

Discontinuity

Equations*

being readily obtainable

This method gives a rigorous result for the limited

number of configurations to which it can be applied. It

is not. successful, however, in the majority of those

cases in which the discontinuity takes the form of a

variation over the cross section of the waveguide, such

as, for exalnple, diaphragms, strips, change of guide

cross section, etc. Nor is it applicable to configurations

in which the propagation medium changes at the dis-

continuity, e.g., if there is a dielectric or ferrite insert.

For such cases it is more satisfactory to take the field

over the cross section as the unknown variable, and a

different type of integral equation can be set up for this

class of problems. The Wiener- Hopf technique is no

longer usuable, but the equation can be solved to various

quasi-static degrees of approximation in some particular

cases. This has been done by Schwinger and co-authorsl

for waveguide diaphragms, and by Lewinz,8 for u n-

‘ N. Marcuvitz, “lJTaveguide Handbook, ” M.1.T. Rad. Lab. Ser.,
McGraw-Hill Book Co., Inc., New Yorkr N, Y., p. 147; 1951.

2 L. Lewin, “The impedance of unsymlnetrical str]lps in rectangu-
lar waveguides, ” PFOC. IEE, vol. 99, pt. 4, pp. 168-176, Monograph
No. 29; 1952.

3 L. Lewin, “A ferrite boundary value problem in a rectangular
waveguide, ” Proc, IEE, vol. 106, pt. B, pp. 559–563; ~ ovember, 1959.


