1961

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

315

Quantum Fluctuations in Microwave Radiometry”

L. P. BOLGIANO, Jr.T, MEMBER, IRE

Summary—This paper assesses the possible significance of the
quantum nature of electromagnetic radiation in limiting the measure-
ment accuracy attainable with a microwave radiometer. Analogies
are shown to exist between the form of a formula describing fluctua-
tions in the radiometer output, and both a formula describing the
radiometer input signal, and also, a formula describing the output of
a photocell detector. Detailed quantum mechanical consideration of
the processes of amplification and detection are circumvented by
considering how the formula for fluctuations in the radiometer out-
put might be modified so as to make it consistent with the measure~
ment precision implied by these other formulas. A modified formula
is suggested which includes a quantum fluctuation whose magnitude
depends on signal power.

I. INTRODUCTION

VI YHE development of microwave radiometers with
very low noise figures and very wide bandwidths
has been steadily decreasing the average number

of photons per unit time-bandwidth represented by the
minimum perceptible signal. It is, therefore, of interest
to consider whether the quantum nature of electro-
magnetic radiation might be significant in limiting the
measurement accuracy attainable in microwave radi-
ometry.

Weber! and Strandberg? have computed the ultimate
limit on sensitivity set by spontaneous emission noise
for both maser and vacuum tube amplifiers. The
equivalent temperature of this noise is only 4f/k for a
maser and 4f/2k for a vacuum tube amplifier. Perhaps
of more immediate significance for microwave radiom-
etry is the possibility of a quantum fluctuation de-
pendent on signal power analogous to the random
counting rate of a photon counter. Gabor®+* has dem-
onstrated mathematically that it is not possible to ex-
tract more information from a signal with electron tube
apparatus capable of measuring both amplitude and
phase than with photon counters. Accordingly, quantum
mechanics should place similar restrictions on the de-
gree to which fluctuations can be reduced in optical and
microwave radiometry. Recently, wave and particle
fluctuations have been measured simultaneously in the
outputs of optical photocell detectors.®$ In Section II,
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we shall show that wave and particle fluctuations also
coexist in the description statistical mechanics gives for
the input signal to a microwave radiometer. In Section
I11, we show that the usual formula for the fuctuations
in the output of a microwave radiometer has an analo-
gous form to the portion associated with wave effects of
both the formula found in Section I and also a formula
describing the wave and particle fluctuations in the out-
put of a photocell detector. In Section IV, we show how
the microwave radiometer formula might be modified to
include a particle fluctuation term of the form suggested
by these analogies. In Section V, we compare the mag-
nitude of this particle fluctuation with that of the
classical wave fluctuation.

II. FLucTUATIONS IN A RADIO SIGNAL

In this section, we shall deduce a formula describing
fluctuations in the input signal of a wide-band micro-
wave radiometer. If the input signal consists of thermal
radiation, it may be described by the Planck radiation
formula. In its most familiar form the Planck radiation
formula is written as the product of two factors. One
factor, 8mf21'df/c?, specifies the number of standing-
wave modes between frequencies [ and f4df in a large,
three-dimensional volume V. The other factor, Af/(exp
hf/kT —1), gives the energy associated with each mode.
For a long one-dimensional microwave transmission line
of length L, for which only one field polarization is
possible, the first factor becomes instead (2L/c)df.
This gives it the frequency independence necessary for
radiative equilibrium with the Johnson noise of a re-
sistive termination. In the language of statistical me-
chanics, each standing-wave mode corresponds to a
quantuin state, and the Bose-Einstein distribution
1/(exp Af/kT—1) is regarded as specifying the number
of quanta of energy Af in the quantum state associated
with the mode of frequency f. Our interest will be in
the time fluctuation which the Bose-Einstein prob-
ability distribution implies in the number of quanta
occupying a group of adjacent quantum states. From a
communication theory viewpoint these fluctuations in
numbers of quanta constitute energy fluctuations
within the frequency bandwidth corresponding to these
quantum states.

This fluctuation may be computed by quantum
statistics. We shall describe the relationship of this
theory to electromagnetic theory only in sufficient de-
tail to permit stating the computation of the fluctuation
as given by Landau and Lifschitz” who give an extensive
discussion of fluctuations in statistical mechanics. In
the classical Rayleigh-Jeans wave theory of thermal

7 L. D. Landau and E. M. Lifschitz, “Statistical Physics,” Addi-

son-Wesley Publishing Co., Inc., Reading, Mass.; 1958. See es-
pecially p. 358. (Translated from the Russian by E. and R. F. Peierls.}
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radiation, equal energy was accorded each standing-
wave mode. In the quantum statistical description, the
total energy is assumed distributed among all the modes
in the most probable way consistent with the con-
straint that the energy of each mode be an integral
multiple of Af. This gives particle properties to the
radiation since the computation parallels the classical
particle mechanics computation of the most probable
distribution of gas particles among cells in phase space,
such that all particles in a given cell have equal kinetic
energy. In fact, the only essential difference is the lack
of an equivalent for the possibility which exists with
classical particles of imagining them individually
labelled so that one can speak of which particle is in
which cell. This has no equivalent in the quantum
statistical theory where only the total number of
quanta associated with each standing-wave mode or
quantum state need be specified to completely describe
a possible energy distribution. The quantum statistical
theory may thus be regarded alternatively as describing
waves with quantized energies or, equivalently, particles
which are intrinsically indistinguishable from one
another.

This intrinsic indistinguishability of particles must be
assumed for gas particles, in general, in order to obtain a
correct quantum mechanical description, and so 1s not a
peculiar property of massless photons. The photon dis-
tribution formula 1/(exp hf/k7T—1) may thus be re-
garded as a special case of the general Bose-Einstein
distribution formula applicable to gas particles not
subject to the Pauli exclusion principle. This formula
may also be used to compute the mean number of
particles in a single quantum state, in which case it
may be written as

_ 1
My = ————————— (1)

eEs—) KT _

where E; is the kinetic energy, equal to 4f for photouns,
and u is the chemical potential, equal to zero for pho-
tons.

Since this mean is associated with a thermal equilib-
rium, the precise number of particles in the state will
fluctuate about #, with time. The mean-square fluctua-
tion may be computed by the general formula?

d

u

(Ang)? = kT (2)

which describes the fluctuation in number of particles
in a portion of a gas at constant temperature and
volume. Applying this to (1) gives

e Ea=) /KT

(Ang)? = =, + A2 3)

(eErmIKT — 1)2
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for all Bose-Einstein particles and for photons in par-
ticular. The statistical independence of the quanta per-
mits summing over a group of N adjacent quantum
states containing altogether #=2n, quanta to obtain
for the mean-square fluctuation in the number of
quanta associated with &V adjacent quantum states

(m)” _ P (4)

T = NG+ 2 = Vo
(An) (ns + 752 ns + e

The corresponding fluctuation in energy E obtained
by multiplying by (%f)* is

(AE)? = ifE+ E'/N. (5)

This expression is interesting because, as first shown by
Einstein and Lorentz,® it gives the total fluctuation as
the sum of two terms which separately correspond to
either classical particle or classical wave phenomena.
The first term by itself is the +/# rms fluctuation
kinetic theory gives for the fluctuation in the number of
classical particles in a small region of a large gas. The
second term by itself is identifiable with the rms energy
fluctuation proportional to squared amplitude which re-
sults from beats between random classical waves and is
normally the only fluctuation considered in communica-
tion theory.

In order to evaluate the number of quantum states IV
associated with a portion of the radiometer input signal,
we need a correspondence between the equilibrium
quantum states we have associated with the Planck
radiation law and the received signal. The needed cor-
respondence is implicit in the previous statement that
the number of standing-wave modes or quantum states
between frequencies f and f+df in a line of length L
is (2L/c)Af. The length of line per quantum state ob-
tained by dividing the number of states into L is
Ax =2¢/Af. Halving the number of degrees of freedom
to correspond to the fact that we are interested in prop-
agation in only one direction gives AxAf=¢. In terms of
the particle momentum p=~=4f/¢, this is equivalent to
the usual association of quantum states with cells of
area AxAp=1~ in two-dimensional phase space. Al-
ternatively, since a wave propagated at velocity ¢ ad-
vances a distance ¢Af =Ax in time Af, one may say that
quantum states correspond to cells of area AAf=1 on
the time-frequency or information plane. This corre-
spondence was first introduced by Gabor® and has been
used by Stern® to analyze the information handling
capabilities of a discrete photon channel. It permits one
to say that the number of quantum states in a duration
At of signal extending over a frequency range Af is the

8 H. A. Lorentz, “Les Theories Statistiques en Thermodynamic,”
Teubner Verlag, Leipzig and Berlin, Germany; 1916.

9 T, E. Stern, “Some quantum effects in information channels,”
IRE TrANs. ON INFORMATION THEORY, vol. IT-6, pp. 435-440;
September, 1960.
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number of cells of unit area in the rectangle on the in-
formation plane representing the time-bandwidth prod-
uct, AtAf.

A microwave radiometer accepts only the signal
power in a bandwidth Af set by its reception filter and
averages this power over an integrating time At set by
its final smoothing filter. Accordingly, the portion of
input signal energy of significance in determining fluc-
tuations may be regarded as that included in the time-
bandwidth AtAf. Since this time-bandwidth product
also equals the number of quantum states in the corre-
sponding portion of signal, it may be taken as the ap-
propriate value of NV in (4) and (5). Thus, the mean-
square energy fluctuation or equivalently the mean-
square fluctuation in power integrated over time Af in
the radiometer input signal is:

(AE)® = WfE + E'/A1Af, (6)

and the mean-square fluctuation in the quanta con-
tained iu this portion of the signal is

ﬁ2

(An)? = 4 + (N

AIAf

The first term in these formulas is a consequence of
the quantum nature of the radiation and has no equiv-
alent in classical wave theory. The second term corre-
sponds to the usual wave fluctuation associated with a
random radio signal. In Appendix II we show that the
fluctuation in the energy of random waves along a trans-
mission line is given by a formula of this form. Rice!®!
has computed the mean-square fluctuation in a random
current. The formula he obtains for the mean-square
fluctuation is of similar form to (29) of Appendix I and,
as explained there, it may be transformed into the form
E’/AtAf by a change of variables.

I111. ANALOGIES BETWEEN FLUCTUATION FORMULAS

Purcell? and Mandel® find for the mean-square
fluctuation in the average number of photoelectrons
produced in time Af in a photocell illuminated by
Gaussian random waves from a spectral line of
width Af

)

(An)2 = ’ﬁ+ arAf . (8)
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The first term corresponds to the usual v/7 rms fluctua-
tion in counting rate associated with all particle counters.
The second term results from the added assumption of
wave fluctuations in the light illuminating the photo-
cell. & is a constant of the order of unity. Since a similar
constant would be required in (7), had we not tacitly
assumed integrating time and bandwidth definitions
such as to make the minimum Fourier integral uncer-
tainty product AtAf precisely unity, the form of (8) may
be regarded as similar to that of (7).

The usual expression for the mean-square fluctuation
in the output of a microwave radiometer may be written
in the general form!

I b
(Az)? = ——

AtAf ©)

where Z denotes the mean output meter deflection, Af
the reception filter bandwidth, and Af¢ the smoothing
filter integrating time. \/ﬁ is the rms fluctuation in
output meter deflection occasioned by the random char-
acter of both signal and system noise.

As in (7), the absence of a factor of proportionality
of the order of unity in (9) depends on the choice of
definitions for integrating time and bandwidth. Dicke,'
for example, gives this proportionality factor as w3/2/8.
The significant point for the qualitative discussion in-
tended here is that this formula for the fluctuation at
the receiver output is of similar form to the terms repre-
senting classical wave effects in both (6), which de-
scribes fluctuations at the receiver input, and (8), which
describes fluctuations in the output of a photoelectric
detector.

1V. MODIFICATION OF RADIOMETER FORMULA

In this section, we shall show how (9) might be modi-
fied so as to include a quantum fluctuation term. For a
receiver which contributes no noise of its own, the mean
deflection 2 is directly proportional to signal power. For
this limiting case, (9), like (6), (7), and (8) may be re-
garded as representing signal fluctuations. However, as
stated in Section I, Gabor has shown that no greater
measurement accuracy should be possible with radio
equipment than for the measurements to which (6),
(7), and (8) apply. Formula (9) differs in form from
these formulas only by the lack of a term associated
with particle fluctuations. Formula (7) may be writ-
ten as

- AtAf 7
(At ={——+1 .
7 AIAf
Thus, a modified fluctuation formula for a microwave
radiometer with unity noise figure equivalent to (9) at

(10)

¥R, S, Colvin, “Faint signal limitations of radiometers,” 1959
IRE WESCON ConvENTION RECORD, pt. 8, pp. 52-58.

15 R, H. Dicke, “The measurement of thermal radiation at micro-
wave frequencies,” Rev. Sci. Instr., vol. 17, pp. 268-275; July, 1946.
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high intensities, and of similar form to (6), (7), and (8) is

o (MY )
(Z)_<ﬁ +>AtAf

(11)

where % denotes the mean number of photons received
in the integrating time At

The assumption of an ideal receiver which adds
negligible noise to the signal prevents the usual inter-
pretation of the mean-square fluctuation given by (9)
as the minimum perceptible signal. This usual inter-
pretation is based on the opposite assumption that for
a weak signal the output meter deflection is mainly due
to receiver noise. Then the fluctuation in meter deflec-
tion is primarily a fluctuation in system noise, indis-
tinguishable from an incremental deflection represent-
ing a weak signal unless it exceeds this fluctuation. In
the limit considered here of no receiver noise, the mean
output meter deflection is proportional to mean signal
strength alone and the fluctuation in deflection is a
fluctuation in measured signal strength. This fluctua-
tion does determine the accuracy with which the mean
signal strength can be measured. [t does not, however,
limit the minimum signal which can be detected, since
the mean-square fluctuation decreases with signal
strength according to either the unmodified formula (9),
or the modified formula (11).

Gabor? concludes that quantum mechanics prevents
measuring an electromagnetic signal in steps smaller
than the square root of the number of quanta it con-
tains with electron tube apparatus. The mean-square
fluctuation given by (11) differs from the purely wave
fluctuation of (9) by an amount /4. The corresponding
rms relative fluctuation v/(Az)?/% equals 1/~+/7. Thus,
the quantum fluctuation in (11) is the minimum fluctua-
tion consistent with Gabor’s general result.

V. CoMPARISON OF WAVE AND PARTICLE FLUCTUATIONS

Since the rms particle fluctuation may be regarded as
a fractional fluctuation of 1/+/% in signal power, its
absolute magnitude increases with signal power.
Whether it is likely to be of consequence in a particular
radiometer measurement is, therefore, likely to de-
pend on its size relative to the wave fluctuation whose
magnitude increases even more rapidly with signal
power.

The ratio of the mean-square wave fluctuation to the
mean-square particle fluctuation in (11) equals the
mean number of quanta per quantum state. Thus, if
this ratio is denoted as R,

R = ii/AIAf. (12)

I{ 7 1s estimated as signal power P times integrating
time At divided by the mean quantum energy expressed
as the product of Planck’s constant £ and the mean
signal frequency f, so that 7= (PAf)/kf, then the ratio
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of the mean-square fluctuations may be written in the
equivalent form

PAt P
iy HJAf
RfAf is the minimum sensitivity set by spontaneous
emission noise for a maser amplifier since the equivalent
temperature? of this noise I'=#kf/k corresponds to a
minimum power kTAf= hfAf. From this, it is apparent
that these formulas can have no significance unless R
is greater than unity. Such a limit is to be expected
since many particle statistics were used to derive (4).

(13)

VI. CoNcLUSIONS

Analogies have been shown to exist between the de-
pendence of output meter deflection fluctuations of a
microwave radiometer on bandwidth and integrating
time, and the term representing wave fluctuations in
two formulas which include quantum effects and de-
scribe, respectively, fluctuations in a radiometer input
signal and fluctuations in a photocell output current. It
is shown that a particle fluctuation dependent on signal
power results if the usual formula for the mean-square
fluctuation in the output of a microwave radiometer
with unity noise figure is modified to have the same
form as these other formulas. Although the form of the
modified formula is inferred by analogy, the modifica-
tion is required by Gabor’s general theorem which denies
the possibility of greater signal measurement accuracy
with electron tube apparatus than with particle counters.

AprPENDIX I
ErrECT OF ANTENNA

I'n this appendix, we shall consider how the opera-
tion of the antenna system of the receiver is related to
the fluctuations.

Purely wave considerations are adequate to describe
the coupling which an antenna effects between degrees
of freedom in three-dimensional space and a one-
dimensional transmission line. In fact, if the antenna
did not couple equal numbers of degrees of freedom, a
line terminated by a matched load at one end and at
the other by an antenna in an enclosure of the same
temperature as the line and matched load, could not be
in thermal equilibrium simultaneously at all fre-
quencies.” Thus, in Section II, we were able to compute
the number of degrees of freedom involved by simply
counting the number of possible standing-wave modes
for the transmission line. Since the statistical mechanics
computation required only a knowledge of this number,
specific consideration of the antenna was unnecessary.

It may not be entirely evident that this computation
of degrees of freedom using purely wave concepts is
adequate to account for the particle as well as the wave
nature of the radiation. In order to clarify this fact,
we shall give an alternative computation based on
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particle considerations. This computation leads to the
same association of quantum states with information
cells of area AtAf=1 as we found using only wave con-
cepts. This shows that the particle nature of the radia-
tion in no way modifies the result and that classical
wave theory is completely adequate to describe the
guiding of the radiation into the transmission line by the
antenna. In as much as from a wave theory viewpoint
the antenna may be regarded as a suitable aperture to
create a desired diffraction pattern, it is interesting to
compare this situation with X-ray diffraction. The X-ray
diffraction pattern created by a calcite crystal can
similarly be computed from purely wave considerations
even when the intensity is so weak that the photons
“guided by” the diffraction pattern are counted only
one at a time.

We now consider how the coupling of the radiation
field in space to a transmission line may be considered
using particle statistics. The radiation in three-dimen-
sional space will be considered to consist of a photon
gas. As i1s usual in gas theory, quantum states will be
associated with cells of volume 4® in the phase space
associated with the gas particles which are in this case
photons, and where % is Planck’s constant. In order to
determine the portion of signal corresponding to one
quantum state, we shall relate the volume of one of
these cells in the six-dimensional phase space associated
with three-dimensional real space to the area of a cor-
responding cell in the two-dimensional phase space as-
sociated with the one-dimensional antenna feed line.

To do this, we note that an antenna with an effective
aperature of width ¢ will have a beam angle of approxi-
mately M/a radians were N signifies the wavelength.
From a particle point of view, one says instead that
there is an uncertainty in the direction of arrival of a
photon. If the usual momentum p=74f/c is associated
with a photon, the corresponding uncertainty in either
transverse components of momentum is (if/c) sin (\/a)
or for small angles approximately (kf/c)(N/a)="h/a,
corresponding to the Heisenberg uncertainty relation
ApAx>h with Ax =a. A similar uncertainty in the for-
ward component of momentum of magnitude kAf/c
might result from a receiver bandwidth Af. Thus, since
the volume of a cell in phase space is &* we have

B = AxAyAzsAp.Ap,Ap,
AxAyAz(h/e)(h/a)(hAf/c)

making the volume in real space corresponding to a cell
in phase space

I

(14

9

AxAyAz = — - 15
rAyAz Y, (15)

Putting Ax=Ay =g gives the length in the antenna feed
line corresponding to one cell as

Az = ¢/Af. (16)
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In time At, the radiation will travel a distance
Az =cAl, if the transmission line has propagation veloc-
ity ¢. Hence, we can also say that the quanta received
in a time

(17

may be regarded as belonging to the same phase-space
cell. The portion of signal in a one-dimensional trans-
mission line which the antenna associates with a cell
in six-dimensional phase space may thus be associated
alternatively with cells of area AzAp,= (¢/Af)(hAf/c) =h
in the two-dimensional phase space of the photons in
the transmission line or cells of area AtAf=1 in a two-
dimensional time-frequency or information plane. The
precise values of these uncertainty products, of course
depend on the definitions used for angular beamwidth,
frequency bandwidth, and effective antenna aperture.

APPENDIX II
WaveE FrLucrtuatioN IN A TransMIsstoN LINE

In this appendix, we compute an appropriate wave-
theory formula for the mean-square energy fluctuation
in a one-dimensional black body consisting of a trans-
mission line with matched terminations at both ends
such as used, for example, in the Nyquist derivation
of the Johnson noise formula. The method of derivation
and notation will be chosen to emphasize the similarity
of this computation both to Lorentz's computation
for the equivalent three-dimensional case® and to Rice’s
computation of the fluctuation in a random current.!01!

We assume that the current along the line has statis-
tical properties permitting the representation

N
In(z,8) = 2, Crncos (wit + Buz + ¢2)

n=—>N

(18)

where the ¢, are random angles. If the fundamental
radian frequency is denoted by Aw and the constant
phase velocity by ¢, w, = | n[ Aw and B,=n (Aw/c) =nAB.
That is, frequency is always considered positive, but
positive and negative wave numbers are associated re-
spectively with waves traveling in negative and positive
directions. We let C,, equal the actual current amplitude
multiplied by the square root of the inductance per unit
length so that C,? is the average energy per unit line
length in the electromagnetic fields of a single traveling
wave.
The energy per unit line length is then

N
]N2(»‘37 l‘) = Z CIL2 C032 (wﬂt + 6”2 + ¢n)

n=—N

N—1 N
+2 > D CuCucos (wut + Buz + &)

n=—N m=n+t1

08 (wmt + Bz + om). (19)
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Integrating over z gives the energy in a length L of
the line as

Lj2
L =f Iy%(z, Ddz
—L/2
S R
= L<— Z CnZ + - Z Cngpn cos <2wnt + ¢u)
‘(2 n=—~N 2 n=—I~N
N—1 N
+ 2 Z Qnmcncm Ccos [(O),L + wm)t + <¢n + ¢m)]
n=—N m=n41
N—1 N
+ D >0 RumCaCrmcos [(wn — wa)t
n=—N m=n+1
+ - ol Q)
where

sin B, L B sin [(8. + Bum)(L/2)]

YL T (/DB + B

sin [(8, — Bu) (L/2)]

nm =

We shall compute the mean energy in length L and
its mean-square fluctuation by averaging over-all possi-
ble values of the ¢,. These averages may be easily com-
puted using the fact that a cosine function with random
phase averages zero and also that its square averages 3.

The mean energy is given by the first term

E=(1/2)L Si‘, C,2.

n=—N

(21)

The remaining terms give the difference e between
the mean energy and the total energy. Since this dif-
ference accounts for the fluctuation we wish to com-
pute, we can compute the mean-square fluctuation in
energy by calculating the mean value of the square of
these remaining terms.

This computation is facilitated by the following con-
siderations. With the aid of trigonometric identities all
of the cross-product terms may be readily shown to
average zero. We can neglect the sum containing P
since if IV is large, the sums containing Q and R will con-
tain many more terms. If we also replace the cosine
squared terms by their average values we have left

N

>

n=—N m=n-+41

>+ Rt (22)

Before completing the computation, it is convenient
to replace the summations by equivalent integrations.
A suitable representation may be obtained by writing

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

July

the mean energy as an equivalent integration over a
continuous energy spectrum

WL ¥ o

n=—N

E

f

L 2 W(B.)A8— L f °°W(ﬁ)dﬁ. (23)

n=—N

In order to effect a corresponding transformation of
the expression for &, we note that including also the N
terms with # =m represents a negligible percentage in-
crease in the total number of terms which permits us to
write

xo

Qnm + Ruw?],  (24)

ry »o
which transforms into

S e (S0 1B+ BYL/DN
o=z f we [ wo( B 1 )(L/2) ) asas

(" # o (50 (6 = BT/
v [ we [wen (B a2

The first integrand will have an appreciable value only
if B’ is nearly equal to —B. The second integrand will
have an appreciable value only if 8’ is nearly equal to 8.
Thus, we can make the substitutions W(3’) =W(—8)
and W(8") = W(B) in the respective integrands obtaining

f —_— ﬂ)f <sm (,8+6’)(L/2)]> 15'd8

8+ 8)(L/2)
4o wa2(6) f”<sin [(8 = )L/

ag’dgs. 26
D) ) Bag. (26)

Each integral over 8’ equals 2w/L and the bidirectional
symmetry of the problem makes W(8) = W(—p). Thus,

-z [ B

Since w(B) =w(—p), the integrals in the expressions for
both Z and € may be written as twice integrals from
zero to infinity. We can then make the substitutions
B=2xf/c valid for B>0 and 47W(B) =w(f). Defining
w(f) as 4m times W(B) gives w(f) the significance of
energy per cycle for 0 <f < since W(B) signifies energy
per radian for — o <g<«w. Formulas (23) and (27)
then become

- L p* L p
E=_f .
[4 0 c 0

]dﬁ 4l f_:W2(ﬂ)d/8. @27

w(Ndf and &= [ w(pd. (28)
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If we are interested in these mean values for only a
limited frequency range f, <f<fy, write 7'=L/c for the
time required for a wave to propagate the length L of
the line, and assume that the spectral density function
w(f) has a uniform value w, between f, and f; (as it does
by even the quantum mechanical form of the Nyquist
noise formula up to nearly the highest microwave fre-
quencies in current use):

E = Tw(fs — fo) and & = Tw(fs — f.). (29)
Eliminating wo by substituting the first of these formu-
las into the second and redesignating 7" as Af¢ and

Fo—TFa as Af gives

(30)
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Rice'®!! obtains for the mean energy dissipated in a
one-ohm resistor by a noise current with uniform
spectral density w, during time 7" in bandwidth fy—f,

E = Tw(fo — fa), (31)
and for the mean-square energy fluctuation
or? = wl?T(fs — fo). (32)

By similarly eliminating w, between these formulas, this
mean-square fluctuation formula can also be converted
to the characteristic form E'/AtA/.
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On the Resolution of a Class of Waveguide Discontinuity
Problems by the Use of Singular Integral Equations®

L. LEWIN{

Summary—It is shown that a considerable number of solutions
of rectangular waveguide preblems appearing in the literature are all
special cases of a general treatment focused around the known solu-
tion of a singular integral equation. In terms of this a number of
typical results are re-examined. The method is then applied to four
new configurations, and the range of application and the limitations
are examined.

I. INTRODUCTION

7 HE number of waveguide problems capable of
[‘exact solution is limited to a few very simple
shapes, even when the common approximations of

ideal geometry and infinite wall conductivity are made.
A class of problems recently amenable to exact treatment
has involved configurations in which the discontinuity
has separated the space into two uniform regions,
z<0 and z>0. Examples are the radiation into free
space of a semi-infinite length of guide, a bifurcation of
the waveguide, and, exceptionally, a diaphragm half-
way across the guide. The solutions involve the setting
up of an integral equation for the field along the guide
axis, or some other equivalent axis, the integral equation
taking a different form on either side of the discon-
tinuity. It is then solved by the Wiener-Hopf technique,

* Received by the PGMTT, March 8, 1961.
1 Standard Telecommunication Laboratories, Harlow, Essex,
England.

the waveguide parameters being readily obtainable
from the solution.

This method gives a rigorous result for the limited
number of configurations to which it can be applied. It
is not successful, however, in the majority of those
cases in which the discontinuity takes the form of a
variation over the cross section of the waveguide, such
as, for example, diaphragms, strips, change of guide
cross section, etc. Nor is it applicable to configurations
in which the propagation medium changes at the dis-
continuity, e.g., if there is a dielectric or ferrite insert.

For such cases it is more satisfactory to take the field
over the cross section as the unknown variable, and a
different type of integral equation can be set up for this
class of problems. The Wiener-Hopf technique is no
longer usuable, but the equation can be solved to various
quasi-static degrees of approximation in some particular
cases. This has been done by Schwinger and co-authors!
for waveguide diaphragms, and by Lewin?? for un-

LU N. Marcuvitz, “Waveguide Handbook,” M.I.T. Rad. Lab. Ser.,
McGraw-Hill Book Co., Inc., New York, N. Y., p. 147; 1951.

¢ L. Lewin, “The impedance of unsymmetrical strips in rectangu-
lar waveguides,” Proc. IEE, vol. 99, pt. 4, pp. 168~176, Monograph
No. 29; 1952.

3 L. Lewin, “A ferrite boundary value problem in a rectangular
waveguide,” Proc. IEE, vol. 106, pt. B, pp. 559-563; November, 1959.



